

Lecture 2

IFE: Course in Low Level Programing

Memory management in PM

IFE: Course in Low Level Programing

Memory management of the IA-32 architecture provides:
- segmentation,
- paging.

Segmentation – mechanism of isolating code, data and stack modules of multiple programs
enabling their operation without mutual interference.

Paging – mechanism for implementing virtual-memory systems where sections of programs
are mapped into physical memory when needed. Use of paging is optional. It can be switched
on/off with 31 bit in CR0 control register (see Fig. 2.2).

Fig. 2.1 Sample codes turning paging on
and off

With the aid of CR0 register (bit 0) we are able to switch the PM on and off (see Fig. 2.1).

Fig. 2.2 Sample codes turning the PM on
and off

Memory management in PM

IFE: Course in Low Level Programing

Segmentation

Segmentation provides mechanisms for
dividing the processor's addressable
memory space (here called the linear
address space) into protected address
spaces called segments. Segments can
hold: program code, data and stack, and
system data structures.

Memory segments can be assigned:
attributes of privilege, base address,
limit and usage. That information
defining memory segment is stored in
segment descriptor.

Segment descriptors are stored in
descriptor tables: global (GDT) and
local (LDT) and are identified with
segment selectors.

Fig. 2.3 Segmentation

Memory management in PM

IFE: Course in Low Level Programing

Segment descriptor format

Segment descriptor is an 8 bytes long structure that contains one memory segment's: base
address (32-bits), limit (20-bits) and access rights (see Fig. 2.4 and 2.5).

Fig. 2.4 32-bit Code Segment Descriptor

Fig. 2.5 32-bit Data/Stack Segment Descriptor

Definition of descriptor fields:
1. Segment base address – 32-bit value defining the base address of the segment in the
linear address space.

Memory management in PM

IFE: Course in Low Level Programing

2. Segment limit – 20-bit field defining the largest offset of the segment. The limit can be byte
(G=0) or 4kB page (G=1) granular.
3. G (Granularity) – indicates whether the limit is byte (G=0) or 4kB page (G=1) granular. With
byte granularity offset can be adjusted with byte resolution. Hence the maximum segment size
is 1MB. For page-granularity the unit change of offset value shifts the linear address by 4kB
and the maximum segment size is 4GB.
4. D (Default) – indicates whether the segment is 32-bit (D=1) or 16-bit (D=0).
5. E (Expansion Direction) – used with data segments, indicates whether the segment extends
from its base address up to base address+limit (E=0), or from the maximum offset down to the
limit (E=1). A data stack is usually the expand-down (E=1) segment what enables the dynamic
change of its size.
6. B (Big) – for data segments, indicates the maximum offset as 0ffffffffh (B=1) and 0000ffffh
(B=0). This bit is significant only for expand-down segments.
7. Access rights:

a. P (Present) – segment is in physical memory (P=1) or not (P=0). Used by virtual
memory managers.
b. A (Accessed) – indicates whether the segment was accessed (A=1) since the last time
bit A was cleared. In virtual memory systems operating upon segments this bit can
determine segment usage.

Memory management in PM

IFE: Course in Low Level Programing

c. DPL (Descriptor Privilege Level) – indicates privilege level of the segment as a number
0, 1, 2 or 3.

Tab. 2.1 Privilege levels

The DPL of current code segment indicates Current Privilege Level (CPL).
d. R (Readable) – in case of code segments indicates whether the code segment is
readable (R=1) or not (R=0). Code segments are always executable.
e. C (Conforming) – for code segments only, indicates wether the CPL changes when the
segment is called from lesser privilege level (C=0) or not (C=1).
f. W (Writable) – for data segments indicates whether the segment is writable (W=1) or
not (W=0). Data segments are of course always readable. Data segments for stack must
be writable.
g. AVL – available for use with system software.

Memory management in PM

IFE: Course in Low Level Programing

Examples of segment descriptors

Code segment
Real mode segment address: 4b10h:0000h
Segment size: 1000h B
Access rights: readable, non-conforming, present, granularity 1 B, 32-bits, supervisor level
Linear (32-bit) base address: 16*4b10h+0000h=0004b100h
Limit: 1000h – 1=0fffh
Descriptor: dw 0fffh, b100h, 9a04h, 0040h

Data segment
Real mode segment address: 5cf0h:0000h
Segment size: 4000h B
Access rights: writable, present, granularity 1 B, 32-bits, user level, expand up
Linear (32-bit) base address: 16*5cf0h+0000h=0005cf00h
Limit: 4000h – 1=3fffh
Descriptor: dw 3fffh, 0cf00h, 0f205h, 0040h

Memory management in PM

IFE: Course in Low Level Programing

Fig. 2.6 Global Descriptor Table

Global Descriptor Table

The Global Descriptor Table holds an array of segment descriptors. Its address and limit are
located in GDTR register which can be written with LGDT instruction. There is only one GDT.
The GDT can hold up to 8192 descriptors
including obligatory NULL descriptor.

Memory management in PM

IFE: Course in Low Level Programing

Selector

Descriptors are identified by 16-bit selectors of the following form.

Fig. 2.7 Selector format

Local descriptor table

Each application (task) can have its own address space defined by descriptors written in its
Local Descriptor Table (LDT).
Current LDT is indicated (and defined by descriptor in GDT) by its selector loaded into LDTR
System Register with the aid of LLDT instruction.

Fig. 2.8 LDT Descriptor

Memory management in PM

IFE: Course in Low Level Programing

Exemplary application - descriptors structure

Fig. 2.9 Exemplary descriptor structure for supervisor/user application

Memory management in PM

IFE: Course in Low Level Programing

Privilege Levels Indicators
CPL (Current Privilege Level) – privilege level of currently executing program or task,
DPL (Descriptor Privilege Level) – privilege level of segment. The DPL is interpreted
depending on the type of segment, e. g.:

- Data segment: it is numerically highest privilege that a program or task can have to be
allowed to access the segment.
- Code segment (conforming): indicates the numerically lowest privilege level that a
program or task can have to be allowed to access the segment.

RPL (Requested Privilege Level) – it is an override privilege level that is assigned to segment
selectors. The processor checks RPL and CPL to determine if access is allowed. That is, if
RPL is numerically greater than CPL it overrides the CPL, and vice versa. The RPL can be
used to ensure that privileged code does not access segments with use of selectors passed,
for example as procedure arguments, from lower privileged code unless the lower privilege
code is not allowed to (for further information refer to Intel Manuals).

Memory management in PM

IFE: Course in Low Level Programing

Access rights checks during memory referencing
Memory read/write, execute
- destination must be located in readable/writable segment,
- destination address must be within the limits of referred to segment,
- addressing with NULL descriptor is not allowed,
- in case of execution transfer the destination segment must be of executable type (transfer
between different privilege levels will be discussed during the forthcoming lectures),
- during read/write operation RPL and CPL <= DPL.
Violation of any of above rules results in rise of exception.
Loading segment registers with selectors
- segment selector index must be within limits of descriptor table,
- in case of SS: segment selector cannot be NULL, RPL=CPL, DPL=CPL, segment must be
present and must be writable data segment,
- in case of DS, ES, FS, GS: segment must be readable data segment, RPL, CPL <= DPL,
segment must be present.
Violation of any of above rules results in rise of exception.
Requirements for data, stack and code segments in real mode
When switching back to the real mode it is required to provide the selectors for: 16-bit,
readable, present, 1B granularity, maximum limit 0ffffh, executable privilege 0 code segment in
CS, and 16-bit, present, writable, 1B granularity, 0ffffh limit, expand up, privilege 0 data
segment in DS, ES, FS, GS and SS registers.

Memory management in PM

IFE: Course in Low Level Programing

Memory paging
The 4 GB linear address space
is divided into 1048576 pages
of 4 kB each (see Fig. 2.10).
Usually virtual memory is much
larger than implemented one.
When accessing memory page
that is not in physical memory
an exception is generated. The
exception allows the supervisor
software to load required page
(e.g. from HDD) transparently
to the user program.
The “new” page is loaded into
physical memory in place of
some other page which must
be written on HDD.
During such operation address
translation is required.

Fig. 2.10 Paged virtual and physical memory

Memory management in PM

IFE: Course in Low Level Programing

Address translation process
The address translation process replaces the upper 20 bits of
linear address (virtual page address) with 20-bit value of the
physical page address. The translated value is obtained from
hierarchical translation tables (see Fig. 2.11).

Fig. 2.11 Hierarchical structure of paging tables

The page directory includes 1024 entries
defining the location of page tables
Each of page tables entries indicates the
location of one 4 kB long memory page.
The CR3 register contains 20-bit address of
page directory.

Memory management in PM

IFE: Course in Low Level Programing

Page directory entry

1. Page table address – upper 20 bits of page table address. Lower 12 bits are all 0.
2. For OS – for use of operating system.
3. D (Dirty) – indicates whether any of 1024 page table pages was written (D=1) or not (D=0).
If D=1 then the supervisor program must write on disk one (several) page(s) back before
replacing the page(s) in memory.
4. A (Accessed) – indicates whether any of 4 MB pages has been written/read. Useful for
statistics of page usage.
5. U/S (User/Supervisor) – enables protection for 1024 pages described by the page table.
6. R/W (Read/Write) – indicates write protection for 1024 pages described by the page table.
7. P (Present) – indicates whether the page table is present in physical memory (P=1) or not
(P=0).

Fig. 2.12 Structure of page directory entry

Memory management in PM

IFE: Course in Low Level Programing

Page table entry

1. Page address – upper 20 bits of page address. Lower 12 bits are all 0.
2. For OS – for use of operating system.
3. D (Dirty) – indicates whether any of 1024 pages was written (D=1) or not (D=0). If D=1 then
the supervisor program must write on disk the page back before replacing it in memory.
4. A (Accessed) – indicates whether the page has been written/read. Useful for statistics of
page usage.
5. U/S (User/Supervisor) – enables protection for physical memory page described by the
page table entry.
6. R/W (Read/Write) – indicates write protection for the page.
7. P (Present) – indicates whether the page is present in physical memory (P=1) or not (P=0).

Fig. 2.13 Structure of page table entry

Memory management in PM

IFE: Course in Low Level Programing

Address translation process (cont.)
Page dir. entry addr. = bits 31-12 from CR3 (bits 31-12) bits 11-2 from linear addr. (bits 31-22),
Page table entry addr. = bits 31-12 from dir. entry (bits 31-12) bits 11-2 of linear addr.

 +(bits 31-22 of page dir. entry),

Fig. 2.14 Translating linear address to the physical one

Physical memory page addr.=bits 31-12 from table
entry (bits 31-12) bits 11-0 of linear addr..

Memory management in PM

IFE: Course in Low Level Programing

Address translation (cont.)
In order to speed up the translation process (i.e. to minimize the number of references to
memory that holds translation tables) Translation Lookaside Buffer (TLB) is used. Such
buffer is designed as four-way associative memory and holds addresses and privileges of
thirty two physical memory pages (see Fig. 2.15).

Fig. 2.15 TLB organization

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18

